Stability of the Cauchy-Jensen Functional Equation in -Algebras: A Fixed Point Approach
نویسندگان
چکیده
منابع مشابه
A Fixed Point Approach to the Stability of a Cauchy-Jensen Functional Equation
and Applied Analysis 3 Theorem 2.2. A mapping f : X ×X → Y satisfies 1.1 if and only if it satisfies 1.2 . Proof. If f satisfies 1.1 , then we get
متن کاملStability of the Jensen-Type Functional Equation in C*-Algebras: A Fixed Point Approach
and Applied Analysis 3 for all μ ∈ T1 and all x, y ∈ A. If there exists an L < 1 such that φ x, y ≤ 2Lφ x/2, y/2 for all x, y ∈ A, then there exists a unique C∗-algebra homomorphism H : A → B such that ∥ ∥f x −H x ∥∥B ≤ L 1 − L x, 0 2.5 for all x ∈ A. Proof. It follows from φ x, y ≤ 2Lφ x/2, y/2 that lim j→∞ 2−jφ ( 2x, 2y ) 0 2.6 for all x, y ∈ A. Consider the set X : {g : A −→ B} 2.7 and intro...
متن کاملNon-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملStability of the Jensen–type functional equation in ternary Banach algebras: An alternative fixed point approach
Using fixed point methods, we prove the generalized Hyers–Ulam–Rassias stability of ternary homomorphisms, and ternary multipliers in ternary Banach algebras for the Jensen–type functional equation f( x+ y + z 3 ) + f( x− 2y + z 3 ) + f( x+ y − 2z 3 ) = f(x) .
متن کاملnon-archimedean stability of cauchy-jensen type functional equation
in this paper we investigate the generalized hyers-ulamstability of the following cauchy-jensen type functional equation$$qbig(frac{x+y}{2}+zbig)+qbig(frac{x+z}{2}+ybig)+qbig(frac{z+y}{2}+xbig)=2[q(x)+q(y)+q(z)]$$ in non-archimedean spaces
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2008
ISSN: 1687-1812
DOI: 10.1155/2008/872190